
FY03 CLARAty Workshop: Device/Telemetry

Motivation for new Device class

• Create a common superclass with a rich interface

• Allow enumeration of instantiated devices (e.g. “Give
me all the motors”)

• Allow exploration of device properties through a
generic interface (including properties specific to the
specialization)

• Provide infrastructure for device thread safety

FY03 CLARAty Workshop: Device/Telemetry

Devices

Devices include the following:
• Attributes

– Static configuration information

• Parameters
– Dynamic configuration information

• Telemetry
– Data produced by device

FY03 CLARAty Workshop: Device/Telemetry

Device Attributes

• Device attributes are static information that
is typically required to instantiate a device
– Name
– Hardware connection info (e.g. address)
– Mechanical properties (e.g. ticks per radian)
– Capabilities (e.g. can measure current)
– Limits (e.g. maximum velocity)
– Requirements (e.g. requires calibration)

• Device attributes do not change at runtime

FY03 CLARAty Workshop: Device/Telemetry

Device Parameters

• Device parameters are configuration
information given to the device which may
change at runtime
– Operational parameters (e.g. % of maximum

speed for manipulator motions, servo loop
rate)

– Externally controlled goals (e.g. charging
profile for a battery charger)

– Telemetry update rate

FY03 CLARAty Workshop: Device/Telemetry

Device Telemetry

• Device telemetry is information produced
by the device at runtime
– Sensed information (e.g. measured position or

voltage)
– Internally controlled goals (e.g. in response to

command)
– Status (e.g. power on/off, is calibrated, in fault)
– Future: commands and their completion

FY03 CLARAty Workshop: Device/Telemetry

Device Methods

Identification
• string get_name()
• string get_type_name()
• string get_ancestry()

– Returns a colon-separated list of ancestor
typenames

• string get_impl_type_name()
• string get_impl_ancestry()

FY03 CLARAty Workshop: Device/Telemetry

Device Methods, contd.

Status
• get_status()
• on(), off(), is_on()
• initialize(), is_initialized()
• calibrate(), is_calibrated()
• in_fault(), clear_fault()

FY03 CLARAty Workshop: Device/Telemetry

Device Methods, contd.

Attributes, parameters, telemetry access:
• get_attribs
• get_params
• get_latest_telemetry

– Get most recent cached data, don’t put the
device to extra effort

• update_telemetry
– Force an update

FY03 CLARAty Workshop: Device/Telemetry

Interface/Implementation isolation

• Devices use the bridge pattern to isolate interface
specialization from implementation specialization.

• Device is superclass for interface specialization
• Device_Impl is superclass for implementation

specialization
• Users only interact with Device and its

specializations, never with impls
• Device holds a reference to a Device_Impl
• Device constructor takes a Device_Impl and a bool

for whether or not to delete it when the Device is
destructed

Device Device_Impl&

FY03 CLARAty Workshop: Device/Telemetry

Device Inheritance Hierarchy

• Each kind of device defines both a Device subclass
and an associated Device_Impl subclass

• Hardware specialization is done by subclassing the
Impl for the appropriate kind of device

Device Device_Impl&

Pwrsrc Pwrsrc_Impl&

Battery Battery_Impl&

<Hardware Pwrsrc Specializations>

<Hardware Battery Specializations

<Simulated Pwrsrc Specializations>

<Simulated Battery Specializations

FY03 CLARAty Workshop: Device/Telemetry

Telemetry class

• Telemetry is base class to represent time-
stamped data

• Has interfaces for:
– Type name/ancestry
– Serialization/deserialization
– Cloning

• Virtual method overridden by each subclass to create a
new object of its own type using its copy constructor

• Allows copying all data fields without requiring advance
knowledge of or dependence on Telemetry subclasses

FY03 CLARAty Workshop: Device/Telemetry

Dev_Attrib, Dev_Param, Dev_Telem

• Device_Impl has pointers to objects inheriting Dev_Attrib for attributes,
Dev_Param for parameters, and Dev_Telem for telemetry, all of which
inherit from the Telemetry class

• The actual instantiations of these objects will be appropriate to the
Device_Impl subclass

– For example, Pwrsrc_Impl would instantiate Pwrsrc_Attrib,
Pwrsrc_Param, and Pwrsrc_Telem which add fields specific to
Pwrsrc

• This allows superclasses to access and modify the fields they know
about in the same object that contains the more specific information

• This allows specific information to be accessed through generic
interfaces at the Device level

Telemetry

Dev_Attrib Dev_Param Dev_Telem

Pwrsrc_Attrib Pwrsrc_Param Pwrsrc_Telem

FY03 CLARAty Workshop: Device/Telemetry

Device Methods Revisited
Device-level accessors are templatized for convenient use of

subclasses. Attribs used as example, analogous methods for
params and telem.

• template <T> bool get_attribs(T &attribs)
– Copies attributes into attribs
– T can be the actual instantiated class, or any ancestor. If not

either of these, returns false and does not set attribs.
– Additional subclass data beyond T is lost
– Example: Instantiated type is Battery_Attrib, user passes in

Pwrsrc_Attrib, succeeds but loses Battery-specific data
• template <T> bool get_clone_attribs(auto_ptr<T> &attribs)

– Similar to above, but internally calls clone, which causes a
malloc but gets all the subclassed data.

– The user has to free the data, which is facilitated and made
explicit by use of auto_ptr

– If attribs already contained non-NULL pointer, is
automatically deleted by assignment inside get_clone_attribs

FY03 CLARAty Workshop: Device/Telemetry

Telemetry Source<T>

• Provides abstract interface to a source of data, abstracting
away dependence on the data producer

• Templatized on the type of Telemetry provided
• Supports:

– get_next_telemetry, with optional timeout
– get_latest_telemetry and get_earliest_telemetry, with

optional newer_than time and timeout
• Contains parameters for minimum and maximum intervals,

with set and get methods
• Remembers timestamp of last data returned to user, with set

and get methods
• Blocking semantics if timeouts not used
• One-to-a-customer, should not be shared

FY03 CLARAty Workshop: Device/Telemetry

Telemetry Locker

• Telemetry_Locker contains:
– An auto_ptr<LT> pointing to a data object exclusively held by the locker
– A lock
– A condition variable

• The data producer writes to the locker when it has new data
– The write will either clone an item provided as a const LT &, or take ownership of an item

provided as an auto_ptr<LT> &
– The item in the locker will be of type LT, or a subclass of LT
– Writing to the locker triggers the condition variable, waking any blocking consumer threads

• Consumers access the data through a specialization of Telemetry_Source<RT> which
has a reference to the locker

– The Telemetry_Locker_Source is templatized on both on LT, the type explicitly in the locker,
and RT, the type returned by the Telemetry_Source.

– So long as RT matches or is an ancestor of the type of the item actually held in the locker the
cast will succeed, so RT may be more specific than LT.

– All blocking reads in Telemetry_Locker_Source are implemented as condition variable waits,
so any threads waiting on these will be woken up when an item is written

– Many Telemetry_Locker_Source instantiations can refer to the same Telemetry_Locker

Telemetry_Locker<LT>

Telemetry Item
Data Producer

Data Consumer

Telemetry_Locker_Source<RT,LT>
…

&

&

Telemetry_Source<RT>

Telemetry_Locker_Source<RT,LT>

Data ConsumerTelemetry_Source<RT>

FY03 CLARAty Workshop: Device/Telemetry

Device Telemetry Sources and Lockers

• Device_Impl contains two telemetry lockers:
– Telemetry_Locker<Dev_Param> _dev_plocker
– Telemetry_Locker<Dev_Telem> _dev_tlocker

• When new params are set or telemetry is updated new data is
written to the lockers

• Device provides generic interfaces to request telemetry sources:
– get_telemetry_source_names
– get_telemetry_source(name)
– get_dev_telemetry_source

• Device specializations provide specialized versions for their specific
Dev_Telem type (e.g. get_battery_telemetry_source returns a
Telemetry_Source<Battery_Telem>)

• These calls create a new Telemetry_Locker_Source attached to
one of the Device_Impl lockers, and return the result in an auto_ptr
to indicate that the caller owns the object and needs to free it.

FY03 CLARAty Workshop: Device/Telemetry

Telemetry_Logger<T>

• Telemetry_Logger is a superclass for objects
which log Telemetry_Source<T>
– It provides an add_source call which takes ownership

of the source, and can associate a name with it
– It starts a thread for each source, and uses the

blocking get_next_telemetry call, so no polling is done
– Methods are provided to get the names and states of

sources being logged, and to start and stop logging of
sources, either individually or all at once.

• Specializations override the virtual _send_item
call to take appropriate action.
– Examples have been implemented for c++ streams,

Chris Urmson’s socket layer, and a CORBA link

